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Vampir — Tool Suite
* Help you with optimizing your parallel application
* Provides a view into the execution of the application

* More detailed view than profiling
(temporal and spatial dependencies etc.)

* Vampir does not fix your code
Vampir does not optimize your code
You are the expert — you draw the conclusions



Motivation

* Why performance analysis?
— Efficient usage of limited resources
— Increase scalability for bigger simulations

* Profiling and Tracing
— Include optimization as a phase in your development
— Use tools instead of printf-solutions



Profiling and Tracing

* Instrumentation
— Detect events (points of interest) during execution
— Handle that information in a measurement library
* Profiling
— Aggregates the available information
— Count the time spent in a function and sum it up
* Trace recording

— Save the individual event with a timestamp and
processes/thread information



Profiling and Tracing

* Tracing advantages
— Preserve the temporal and spatial relationships of events
— Profiles can be calculated from a trace but not vice versa

* Tracing disadvantages
— Traces can become very large
— More perturbation than just profiling

— Instrumentation and tracing is more complex
e Largerl/O
* Event buffering

* Clock synchronization issues



Common Event Types

* All Types have timestamp and process information

* Enter and leave of a function/region
— Region ID

* Send and receive of messages (MPI, GPU<->Host)
— Sender, receiver, size, tag, communicator

 Collective communication (MPI)
— Root, communicator, (size)

* Performance counter values (PAPI)
— Counter ID, value



Vampir — Tool Suite

* The Vampir Performance Analysis Suite consists of
— VampirTrace: Collect trace data
— Vampir: The Graphical User Interface for trace analysis
— VampirServer: A parallel performance analysis engine
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VampirTrace

* VampirTrace consists of
— Trace library
— Compiler wrapper
— Tools to process trace files

* VampirTrace collects timestamped events
— No aggregation of data (by default)
— All information is preserved for analysis
— Trace files can become large and hard to handle

— VampirTrace uses two file handles / process, which is a
difficult for LUSTRE to handle on large applications

* Work in progress to fix this



VampirTrace

* VampirTrace supports the tracing of
— Function calls, using

* Compiler instrumentation
* Manual instrumentation (regions)
* Binary instrumentation (dyninst)
* Wrapping library calls
— MPI
* Point to point
* Collectives
* 1/0
— Hardware Counters (PAPI)
— CUDA events

* Memory copy

e Kernel execution



Vampir
* GUI to analyze trace files (OTF)
* Main concept: Timeline

* GUI is QT based — available on Linux, Mac, Windows
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VampirServer

* Parallel analysis engine for Vampir
— MPI
— OpenMP

* Scales to > 10,000 analysis processes

* Loads the entire uncompressed trace into memory



Finding Performance Bottlenecks

* Inefficient Communication patterns
* Load imbalance / serial parts of the application

* Memory bound computation
— Inefficient cache usage

— TLB misses
— Use HW counters (PAPI) to detect

* /0 bottlenecks

* Most time consuming function



Effects due to Tracing

* |/O overhead (flush)

— Visibly marked in the trace

— ‘Long’ time for I/O

— Ideally only once at the end (invisible) or during barriers
— Avoid by applying runtime filters

* Measurement overhead
— Overhead on function calls
— Invisible
— Avoid instrumenting tiny frequently called functions
— Compare total runtime to get an upper bound on overhead



Conclusion

* Performance analysis is very important in HPC
e Use the right tool for your needs
e Use tracing with caution

* Contact me for questions, problems or feature wishes



Thank you

* Contact:

— Thomas llsche, ORNL
5700 B206
ttl@ornl.gov (Thomas.Ilsche@zih.tu-dresden.de)
865-241-6293
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